IKKα negatively regulates ASC-dependent inflammasome activation
نویسندگان
چکیده
The inflammasomes are multiprotein complexes that activate caspase-1 in response to infections and stress, resulting in the secretion of pro-inflammatory cytokines. Here we report that IκB kinase α (IKKα) is a critical negative regulator of apoptosis-associated specklike protein containing a C-terminal caspase-activation-andrecruitment (CARD) domain (ASC)-dependent inflammasomes. IKKα controls the inflammasome at the level of the adaptor ASC, which interacts with IKKα in the nucleus of resting macrophages in an IKKα kinase-dependent manner. Loss of IKKα kinase activity results in inflammasome hyperactivation. Mechanistically, the downstream nuclear effector IKK-related kinase (IKKi) facilitates translocation of ASC from the nucleus to the perinuclear area during inflammasome activation. ASC remains under the control of IKKα in the perinuclear area following translocation of the ASC/IKKα complex. Signal 2 of NLRP3 activation leads to inhibition of IKKα kinase activity through the recruitment of PP2A, allowing ASC to participate in NLRP3 inflammasome assembly. Taken together, these findings reveal a IKKi-IKKα-ASC axis that serves as a common regulatory mechanism for ASC-dependent inflammasomes.
منابع مشابه
Overexpressed NLRC3 acts as an anti-inflammatory cytosolic protein.
The novel nucleotide oligomerization domain (NOD)-like receptor (NLR) with a caspase activation and recruitment domain (CARD) 3 (NLRC3) protein belongs to the NLR family of cytosolic pathogen recognition receptors. NLRC3 has the characteristic NOD and leucine-rich repeat configuration with a less well defined CARD. T lymphocytes are known to have high NLRC3 expression, which may be involved in ...
متن کاملThe deubiquitinating enzyme, ubiquitin‐specific peptidase 50, regulates inflammasome activation by targeting the ASC adaptor protein
NOD-like receptor family protein 3 (NLRP3)-mediated inflammasome activation promotes caspase-1-dependent production of interleukin-1β (IL-1β) and requires the adaptor protein ASC. Compared with the priming and activation mechanisms of the inflammasome signaling pathway, post-translational ubiquitination/deubiquitination mechanisms controlling inflammasome activation have not been clearly addres...
متن کاملSmall heterodimer partner interacts with NLRP3 and negatively regulates activation of the NLRP3 inflammasome
Excessive activation of the NLRP3 inflammasome results in damaging inflammation, yet the regulators of this process remain poorly defined. Herein, we show that the orphan nuclear receptor small heterodimer partner (SHP) is a negative regulator of NLRP3 inflammasome activation. NLRP3 inflammasome activation leads to an interaction between SHP and NLRP3, proteins that are both recruited to mitoch...
متن کاملHemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملDual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma
Apoptosis-associated Speck-like protein containing a CARD (caspase recruitment domain) (ASC) was originally named because it triggered apoptosis in certain tumors. More recently, however, ASC was found to be a central adaptor protein of inflammasome, which mediates the secretion of protumorigenic inflammation. Here we examined the role of ASC in tumorigenesis of human melanoma. Compared with pr...
متن کامل